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Abstract. The equation of state for nuclear matter at finite temperature and the properties of neutron
stars are studied starting from an effective Lagrangian in the framework of the relativistic mean field
theory. We find that the empirical properties of nuclear matter can be reproduced if the medium effects
are mainly described in terms of the Brown-Rho mass scaling on top of the Bonn potential used as the
underlying bare nucleon-nucleon interaction. In particular a correct symmetry energy at saturation density
is obtained. The extrapolation of the equation of state to neutron matter and some predictions for the
neutron-star masses are finally discussed and compared with other nucleonic many-body approaches.

PACS. 21.65.+f Nuclear matter – 21.30.Fe Forces in hadronic systems and effective interactions – 97.60.Jd
Neutron stars

1 Introduction

The understanding of the properties of nuclear matter
under extreme conditions is a crucial and indispensable
goal of nuclear physics and astrophysics. In particular, the
study of asymmetric nuclear matter and neutron stars re-
mains an important motivation for building the radioac-
tive ion beam facilities. The extraction of information on
the equation of state (EOS) for dense matter from collision
data as well as from astrophysical observations represents
a strong check for the existing nuclear matter models.

The Walecka model [1,2], based on the relativistic
mean-field (RMF) theory, and its extensions, which in-
clude nonlinear meson interactions [3,4] and derivative
scalar couplings [5], have been successfully used to study
the properties of nuclear and neutron matter, β-stable nu-
clei and extended to the drip-line region. The RMF ap-
proach has also been intensively used to study the nuclear
matter under extreme conditions of temperature, density
and isospin asymmetry with the purpose of describing
neutron stars and supernova explosions.

Brown and Rho have developed a type of density-
dependent effective field theory in nuclear matter based on
chiral-symmetry requirements [6]. The in-medium masses
of hadrons (baryons and mesons) have to be modified in
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order to guarantee the partial restoration of the chiral
symmetry predicted by QCD in the nuclear medium. Ex-
perimental evidence for that is believed to be the anoma-
lous lepton production observed in the invariant mass re-
gion around 400MeV in heavy-ion collisions performed by
CERES [7] and HELIOS [8] Collaborations. Brown and
Rho suggest to describe the effect of the nuclear medium
on hadron masses by means of simple scaling laws, referred
to as the Brown-Rho (BR) mass scaling laws [6]. The EOS
of nuclear matter is a suitable benchmark to investigate
the medium modifications of hadron properties, including
the BR scaling. Aim of this work is to show that in fact the
mass scaling is able to reproduce the main in-medium cor-
relation effects on the nucleon-nucleon (NN) interaction.

An effective Lagrangian for nuclear matter was pro-
posed in refs. [9–11] to study the in-medium effects de-
scribed by the BR scaling. After the model parameters
are calibrated by the properties of nuclear matter at the
saturation density, this model can give reasonable results
for symmetric nuclear matter at T = 0 MeV. However,
the meson parameters (masses and coupling constants)
along with other model parameters, are fixed completely
by the empirical properties of nuclear matter at the sat-
uration point so that the role played by the BR scaling
turns out to be obscure as far as the in-medium modifi-
cation of the NN interaction is concerned. Moreover in
our scheme the clear separation of different in medium
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contributions, BR scaling vs. self-coupling terms, will also
allow a check of the intrinsic consistency of the model, as
discussed in sect. 3.

More appropriate to the scope is the attitude adopted
by microscopic approaches. The effective interaction,
which is supposed to reproduce the saturation proper-
ties of nuclear matter, also reduces to the basic NN in-
teraction in the limit of vanishing baryonic density. On
the other hand, the underlying NN interaction must be
fixed by the experimental data on the two-body interac-
tion in the vacuum, which is the case with realistic NN
interactions such as Paris, Argonne or Bonn potentials.
A few nuclear matter calculations, based on microscopic
many-body approaches, such as Brueckner [12] and Dirac-
Brueckner [13] theories, have proved that BR mass scal-
ings can substantially contribute to reproduce the empir-
ical saturation properties. In this work we will get similar
results within the much simpler effective field framework
(RMF), easier to apply to nuclear structure and dynamics
problems.

The in-medium effective Lagrangian describing the in-
teraction between nucleons and mesons should be then
expressed in terms of parameters which, in the limit of
zero density, are consistent with the experimental phase
shifts of the freeNN scattering and with deuteron binding
energy. The parameters, bare meson masses and coupling
constants, of the Bonn potential [14] are quite suitable
for such a purpose. They fulfill the above-mentioned ex-
perimental constraints and have been extensively used in
microscopic calculations of nuclear matter. Therefore, fol-
lowing the main task of this work, we construct the effec-
tive Lagrangian density just using the meson parameters
from the Bonn potential, in particular the Bonn B poten-
tial, and impose on the baryon and meson mass the BR
mass scaling.

Since the present approach is a mean-field approxima-
tion, it will be in any case necessary to introduce also
nonlinear terms which take into account other many body
correlation effects. The corresponding parameters are ad-
justed together with the scaling parameter to fit the em-
pirical saturation density and energy of nuclear matter
at zero temperature. The procedure appears to be con-
sistent with convergence requirements for the nonlinear
contributions. This result indicates that Fock, retardation
and other correlations must be in any case introduced on
top of the mass scaling. We will see that no further ad-
justment is required to get realistic values of the symme-
try energy at saturation density for asymmetric matter.
In any case, consistently with the philosophy of the pa-
per, the bare NN -Bonn Lagrangian is recovered in the
zero-density limit.

In this context we study the nuclear EOS at zero and
finite temperature for different scaling parameters. We ex-
tend the calculation to isospin asymmetric nuclear matter
also in order to investigate the implications of our EOS
for neutron-stars.

The main conclusion is that such relatively simple pro-
cedure to get a functional form of the nucleonic energy
density appears to be valid in a wide range of baryon den-

sities, from the description of the liquid-gas phase tran-
sition of very dilute matter to a reasonable prediction of
neutron star properties.

The paper is organized as follows. In sect. 2, the model
with the BR scaling is presented. The nuclear equation of
state at finite temperature is given in sect. 3. The nuclear
symmetry energy and the β-equilibrium nuclear matter
are presented in sects. 4 and 5, respectively. The prop-
erties of neutron stars are given in sect. 6. General com-
ments and a summary of main conclusions are presented
in sect. 7.

2 The model

The starting point is the relativistic Lagrangian density
with the BR mass scaling

L = ψ̄[iγµ∂
µ −M? + gσφ− gωγµωµ − gργµ~τ ·~bµ]ψ

+
1

2
(∂µφ∂
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µ)2
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ρ
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−1

4
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µν − 1

4
~Gµν

~Gµν , (1)

where φ, ωµ, and ~bµ stand for the σ-, ω-, and ρ-meson
fields, ~τ is for the isospin matrix, Fµν = ∂µων − ∂νωµ,
~Gµν = ∂µ~bν − ∂ν~bµ, and c is the parameter of a nonlinear
potential of ω-meson. A nonlinear potential of σ-meson is
denoted as

U(φ) =
1

3
aφ3 +

1

4
bφ4 , (2)

where a and b are the parameters of the potential. The
hadron masses are scaled according to the BR scaling laws

M?

M
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m?
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ω
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mρ

= Φ(ρ) . (3)

The scaling function is assumed to be [9–11]

Φ(ρ) =
1

1 + yρ/ρ0
, (4)

where y is the scaling parameter.
Since the Lagrangian density, eq. (1), is density-

dependent, rearrangement contributions arise in the equa-
tion of motion for the baryon field. One obtains [10]
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as done in ref. [9]. The following definitions have been
adopted: ρ̂2 = jµj

µ with jµ = ψ̄γµψ and uµ =
1√

1−~v2
(1, ~v) = 1√

ρ2−~j2
(ρ,~j). ~j = 〈ψ̄~γψ〉 (baryon current

density), and ρ = 〈ψ+ψ〉 (baryon density).
In the mean-field approximation (MFA, see [9]), Σ0 is

given by

Σ0 = 〈Σ〉|~v=0 = m?
ωω

2
0

∂m?
ω

∂ρ
+m?

ρb
2
0

∂m?
ρ
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−m?
σφ

2 ∂m
?
σ

∂ρ
− 〈ψ̄ψ〉∂M

?

∂ρ
. (7)

The equations of motion for baryon and meson fields
with the BR mass scaling in MFA are

(iγµ∂
µ −M? + gσφ− gωγ0ω0

−gργ0τ3b0 + γ0Σ0)ψ = 0

m?2
σ φ+ aφ2 + bφ3 = gσ〈ψ̄ψ〉 = gσρs

(m?2
ω + cω2

0)ω0 = gω〈ψ+ψ〉 = gωρ

m?2
ρ b0 = gρ〈ψ+τ3ψ〉 = gρρ3 , (8)

where ρ3 = ρp−ρn, ρ and ρs are the baryon and the scalar
densities, respectively.

Neglecting the derivatives with respect to meson fields,
the energy-momentum tensor can be written as

Tµν = iψ̄γµ∂νψ + [
1

2
m?2
σ φ

2 + U(φ)− 1

2
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λ

−1

4
c(ωλω

λ)2 − 1

2
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ρ
~bλ~b

λ + ψ̄uλγ
λΣψ]gµν , (9)

with uµ = (1,~0) in the rest frame.

3 Nuclear equation of state at finite

temperature

The properties of nuclear matter at finite temperature are
described by the thermodynamic potential: Ω = −pV =
− 1
β
lnZ, where β is the inverse of temperature, β =

1/kBT , and Z is the grand partition function given by

Z = Tr[e−β(Ĥ−Σi(µiB̂i))]. Ĥ is the Hamiltonian operator,

B̂i is the baryon number operator for neutron (i = n) and
proton (i = p), µi is the chemical potential. The nuclear
EOS with the BR mass scaling at finite temperature is
obtained from the thermodynamic potential Ω as [2]
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Table 1. Parameters and coupling constants of Bonn-B po-
tential [14], masses of nucleon and mesons are given in unit of
MeV.

M mσ mω mρ g2
σ/4π g2

ω/4π g2
ρ/4π

939 550 782.6 769 8.0769 20 0.95

where E?
N =

√

k2 +M?
N

2, the effective mass M?
N is de-

fined asM?
N =M?−gσφ, hereM? is the BR scaling mass

of the nucleon given in eq. (3). The ni(k) and n̄i(k) in
eqs. (10) and (11) are the fermion and antifermion distri-
bution functions

ni(k) =
1

1 + exp{(E?
N (k)− µ?i )/kBT}

, (12)

and

n̄i(k) =
1

1 + exp{(E?
N (k) + µ?i )/kBT}

, (13)

where the effective chemical potential µ?i is determined by
the nucleon density ρi

ρi = 2

∫

d3k

(2π)3
(ni(k)− n̄i(k)) , (14)

and the µ?i is related to the chemical potential µi of neu-
tron (i = n, (+)) and proton (i = p, (−)) by the equation

µ?i = µi − gωω0 +Σ0 ∓ gρb0 . (15)

The scalar density ρs is given by

ρs = 2
∑

i=n,p

∫

d3k

(2π)3
M?

N

E?
N

(n(k) + n̄(k)) . (16)

For the asymmetric nuclear matter, one introduces the
asymmetry parameter α, which is defined as α =(ρn −
ρp)/ρ with ρn = 1+α

2 ρ and ρp = 1−α
2 ρ. Obviously, the

nuclear EOS is a function of baryon density ρ, temper-
ature T and asymmetry parameter α. Thus, the energy
density and pressure for symmetric and asymmetric nu-
clear matter at finite temperature can be self-consistently
calculated from eqs. (10) and (11).

In the present model, the hadronic masses and the cou-
pling constants from the Bonn-B potential are listed in
table 1. The binding energy is defined by E/A = ε/ρ−M .
As pointed out in ref. [15], the spin-orbit splittings in fi-
nite nuclei are approximately connected to the properties
of nuclear matter, in particular to the nucleon effective
mass. The suggested value of M ?

N = 0.60M at the sat-

uration point of nuclear matter ρ0=0.16 fm−3, with a
binding energy E/A = −16 MeV, is taken to be as our
input. Then, the coefficients of the σ- and ω-meson self-
interaction terms, A = a/g3

σ, B = b/g4
σ and C = c/g4

ω,
are determined by adjusting the scaling parameter y. The
obtained coefficients for different values of y are presented
in table 2.
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Table 2. Model parameters.

y A (fm−1) B C K (MeV)

0.10 −0.0230298 0.0337494 0.0096414 192

0.08 −0.0300563 0.0324686 0.0102347 231

0.06 −0.0354435 0.0306952 0.0111201 276

0.00 −0.0434008 0.0235143 0.0181230 484

In the same table the corresponding numerical results
for the nuclear matter incompressibility K = 9 ∂P

∂ρ
|ρ=ρ0

,

for symmetric matter, are also reported.
We see that the incompressibility of nuclear matter in-

creases as y decreases, in spite of the nonlinear term cor-
rections. The value of K at y = 0 is 484MeV, which seems
too large in comparison with the empirical estimations [5].
On the other hand if the nonlinear potentials for σ and ω
mesons vanish in the present model, i.e. a = b = c = 0,
our numerical calculations indicate that it is impossible
to get reasonable saturation properties of nuclear mat-
ter with and without the BR mass scaling. Therefore, the
nonlinear potentials of σ and ω mesons are certainly im-
portant. A nice feature of our approach is that we are able
to saparate the various contributions from in medium ef-
fects. In the following we will quantitatively analyze the
interplay between self-interacting terms and BR scaling
for the effective mass determination.

In contrast, in previous studies along the same line,
see ref. [10], two scaling parameters are introduced while
all the other model parameters still need to be fully fitted
at the saturation point of nuclear matter. In this way the
link to the bare interaction disappears.

Since the behavior of the nuclear EOS given by the
three sets of parameters with the BR mass scaling in ta-
ble 2 is similar, we only present the results obtained with
the scaling parameter y = 0.10.

3.1 Nucleon effective masses

The comparison between the BR scaled mass M ? and the
effective nucleon mass M?

N with y = 0.10 is displayed in
fig. 1. Both masses are decreasing with increasing density,
and the difference between M? and M?

N becomes consid-
erable large in the high-density region. It should be noted
that the attractive interaction stemmed from the σ-meson
exchange mainly leads to the decrease of the effective nu-
cleon mass. Moreover we have superimposed in-medium
effects described by the decrease of the BR scaling mass
coupled to the self-coupling contributions. A more detailed
analysis on the weight of the different terms at saturation
can be useful to better understand the structure of the
model.

Starting from an approximated estimation of the scalar
density at saturation

ρ0s ' ρ0
M?

N
√

k2
F +M?

N
2
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Fig. 1. Comparison between the BR scaling mass M ? and the
effective nucleon mass M?

N as a function of the baryon density
by the y = 0.10 set.

using a M?
N ' 0.6MN , we can get three different evalua-

tions of the nucleon masses at ρ0:

– Contribution of only the linear-σ part, without BR
and non-linear terms. Using the free Bonn-B values of
table 1 we have

fσ ≡
(

gσ
mσ

)2

= 13.04 fm2

and so an effective mass at saturation

M?
N =M − fσρ0s = 604MeV.

– Contribution of the BR scaling only, all masses scaled
following the eq. (3) prescription with scaling param-
eter y = 0.1:

M?
N =M?(BR)− fσ(BR)ρ0s = 456MeV

since M?(BR) = 853MeV and the fσ(BR) coupling
will increase to 15.75 fm2.

– Inclusion of also the self-coupling terms. We get the
value of the complete calculation shown in fig. 1, i.e.
M?

N = 564MeV.

We can conclude that the corrections to the nucleon free
mass are in this order:

linear only: ∆M(Lin) = −334MeV,
adding the BR scaling: ∆M(BR) = −148MeV,
adding the non-linear terms: ∆M(Nonlin) =

+108MeV.
The relative weights are roughly in the order

3 to 1.5 to 1. This nicely shows that the self-coupling
contributions are still important. Moreover, it should be
noted that the non linear terms effect is rapidly decreas-
ing at low density as we can see from the structure of the
eqs. (8). This is consistent with the general philosophy of
this work, to recover the free-space NN -Bonn Lagrangian
in the zero-density limit.



B. Liu et al.: Equation of state of nuclear matter and neutron stars in a hadron mass scaling frame 341

0.0 0.1 0.2 0.3 0.4 0.5
-20

-10

0

10

20

y=0.10

α=0

20

15

10

5

T=0 MeV

E
/A

 (
M

e
V

)

ρ (fm
-3

)

Fig. 2. Energy per nucleon as a function of the baryon density
for symmetric nuclear matter (α = 0) at different temperatures
(y = 0.10 set).
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Fig. 3. Pressure as a function of the baryon density at T = 0
and 8MeV for different α.

3.2 Phase diagram of nuclear matter

Figure 2 shows the energy per nucleon as a function of the
baryon density for symmetric nuclear matter (α = 0) with
the y = 0.10 set at different temperatures. The results
show that the increasing of temperature moves the curves
upward, and makes the nuclear matter less bound. From
the critical condition for the liquid-gas phase transition
∂P
∂ρ
|Tc

= ∂2P
∂2ρ
|Tc

= 0, we find the critical temperature Tc =

18.63 MeV in the present model. This critical temperature
is comparable with that obtained by microscopic many-
body calculations [16].

The pressure as a function of the baryon density at
T = 0 and 8MeV for different α with the y = 0.10 set is
shown in fig. 3. The local minimum for a fixed T is shifted
to the low-density region as α increases. The new equilib-
rium density, zero-pressure point, is also shifted to lower
values, typical of a stiff symmetry energy, see refs. [17,18],
as we will discuss in the following.
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Fig. 4. Energy per nucleon as a function of the baryon density
at T = 0MeV by the y = 0.0 and 0.10 sets.

The pressure for a fixed α increases with increasing
temperature. The local maximum at the low-density re-
gion for a fixed α is moved to the large-density region as
temperature increases.

In order to compare the results with (solid line) and
without (dotted line) the BR mass scaling, we plot the
energy per nucleon as a function of the baryon density for
symmetric nuclear matter at T = 0MeV in fig. 4. The
obtained results show that the behavior of the EOS with-
out the BR mass scaling is not reasonable, especially in
the low-density region; moreover, the incompressibility for
nuclear matter turns out to be too large (also see table 2).
The results illustrate that the BR mass scaling is quite
necessary if the empirical properties of nuclear matter are
to be reproduced starting from the Bonn potential param-
eters. The results in the present model with the BR mass
scaling also show that the behavior of EOS for nuclear
matter at finite temperature is consistent with that given
by other more phenomenological RMF models [18–20]. We
can conclude that within the above prescriptions the Bonn
potential works well for nuclear matter in the framework
of the RMF approximation.

4 Nuclear symmetry energy

One basic property of asymmetric nuclear matter for
studying the structure of neutron stars is the density de-
pendence of the nuclear symmetry energy Esym(ρ). The
latter is defined through the expansion of the binding en-
ergy in terms of the asymmetry parameter α

E/A(ρ, α)=E/A(ρ, 0) + Esym(ρ)α2+O(α4) + . . . . (17)

Empirically, we have information on Esym(ρ) only at
the saturation point, where it ranges from 28 to 35 MeV
according to the nuclear mass table [21].

It is well known that the symmetry energy has a ki-
netic contribution, from the different neutron/proton oc-
cupation of momentum space, and a interaction one, e.g.
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Fig. 5. Nuclear symmetry energy and proton fraction as a
function of the baryon density at T = 0MeV by different y
sets.

see ref. [18]. The first is depending on nucleon effective
masses which are actually fixed by saturation properties
of symmetric matter (see sect. 3 before). The interaction
part in our model is due to the ρ-meson coupling which
is also fixed, see eqs. (3), (4), once the scaling parameter
y is chosen, again from properties of symmetric matter.
In this sense our estimation of the symmetry energy is de-
duced without additional adjusted parameters. Our eval-
uation of Esym(ρ0) at saturation, the a4 parameter of the
Weiszaecker formula, obtained from extending the RMF
calculation at finite isospin, is 34.0, 33.6 and 33.1MeV
for y = 0.10, 0.08 and 0.06, respectively, in the correct
empirical range.

At this point we can extend our study to a predicted
behavior in regions off saturation. We have then calcu-
lated Esym(ρ) in a range of densities relevant for applica-
tions in neutron stars. The results are plotted in fig. 5 for
the three different scaling parameters. One main feature
is that Esym(ρ) is monotonically increasing with density,
the stiff behavior noted before, and reaches the critical
threshold for direct URCA processes to occur at rather
low densities, of large interest for the neutron star cool-
ing [22]. A way to probe the symmetry energy vs. density
is that of determining the chemical composition of neutron
stars in the β-equilibrium regime and the related structure
properties, like the mass-radius correlation.

5 β-equilibrium nuclear matter at T = 0

The β-equilibrium nuclear matter is relevant for the com-
position of the neutron star matter. In the present study
we limit the constituents of a neutron star to be neutrons,
protons and electrons. The aim of our discussion is in-
deed to compare with other microscopic many-body cal-
culations at the same level of considering only nucleonic
degrees of freedom.

The composition of neutron star matter is determined
by the request of charge neutrality and equilibrium. The

(n, p, e−) matter is the most important in the β-stable
nucleon + lepton matter. The balance processes for the
(n, p, e−) system are the weak reactions

n −→ p+ e− + ν̄e , (18)

and
p+ e− −→ n+ νe . (19)

The chemical potential equilibrium condition for the
(n, p, e−) system can be written as

µe = µn − µp . (20)

The charge neutrality condition is

ρe = ρp , (21)

where the electron density ρe in the ultrarelativistic limit
for non-interacting electrons can be denoted as a function
of electron chemical potential

ρe =
1

3π2
µ3
e . (22)

The charge neutrality condition can be rewritten

3π2ρXp − [4Esym(ρ)(1− 2Xp)]
3 = 0 , (23)

where Xp = Z/A = ρp/ρ is the proton fraction and the
asymmetry parameter α = 1 − 2Xp. The Xp can be ob-
tained by solving eq. (23). The obtained Xp for the three
different scaling parameters y is presented inside fig. 5 as
a function of the baryon density. The results show that
Xp increases with increasing baryon density for a fixed y
and increases with increasing y for a fixed density. We note
that in all cases the critical proton fraction valueXp = 1/9
to have direct URCA processes [22] is reached at densities
as low as about 2ρ0. This implies that direct URCA pro-
cesses are possible also for low mass neutron stars, where
in fact the observed cooling rate appears much slower than
in higher mass stars. However, we like to note that the
cooling rate in the lighter neutron stars is also hindered
by a more efficient 1S0 proton pairing, as recently shown
in ref. [23].

The EOS for β-stable n+ p+ e (npe) matter at T = 0
can be estimated by using the obtained values of Xp.

6 Neutron star structure

For a first investigation of the implications of the present
EOS in the neutron star physics we assume a simple
nucleonic model, also neglecting the effects of rotational
motion. We will then compare our results with more elab-
orated many-body theories, within the same nucleonic
picture.

The structure of neutron stars can be calculated by in-
tegrating the Tolman Oppenheimer Volkoff (TOV) equa-
tion [24]

dP (r)

dr
= −G[ε(r) + P (r)][Ms(r) + 4πr3P (r)]

r2[1− 2GMs(r)/r]
, (24)
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Fig. 6. Comparison between the pure neutron and the β-stable
(npe) matter for the ratio of the neutron star mass to the solar
mass as a function of the ratio of central density of the star
to the saturation density of nuclear matter at T = 0MeV by
different parameter y sets.

and
dMs(r)

dr
= 4πr2ε(r) , (25)

where Ms(r) is the mass of the star inside the radial coor-
dinate r, and G is the gravitational constant. The radius
R of the neutron star is defined by the zero-pressure equi-
librium condition

P (R) = 0 , (26)

and the total mass of the neutron star is given by

Ms(R) =

∫ R

0

dr4πr2ε(r) . (27)

The properties of neutron star can be studied from
eqs. (24)-(27). Based on the above-discussed EOS we have
solved the TOV equation to investigate the sensitivity of a
pure neutron (α=1) and a β-stable (npe) star structure at
T = 0MeV to the BR scaling. In order to make the com-
parison between the pure neutron-star and the β-stable
(npe) matter, fig. 6 displays the ratios of the neutron star
mass to the solar mass as a function of the ratio of the
central density of the star to the saturation density of nu-
clear matter for different parameter sets at T = 0MeV.
As expected the masses of the pure neutron and the (npe)
stars are nicely sensitive to the scaling parameter y in
the high-density region, with larger differences with the
increasing of y.

For a pure neutron star we find that the maximum
mass ratios Ms/M¯ are 2.30, 2.22 and 2.13 for y = 0.10,
0.08 and 0.06, respectively, and the corresponding cen-
tral density ratios ρc/ρ0 are 5.50, 5.75 and 5.81. For the
β-stable (npe) case the maximum ratios Ms/M¯ are 1.91,
1.86 and 1.80 for y = 0.10, 0.08 and 0.06, respectively,
with in correspondence ρc/ρ0 values 7.50, 7.69 and 7.94.
These results show that the maximum masses of the pure
neutron star and the β-stable (npe) matter increase with
the increasing of y whereas the central density of the star
decreases. The maximum masses of the β-stable (npe) star
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Fig. 7. Comparison between the pure neutron and the β-stable
(npe) matter for the radius of the neutron star as a function of
the ratio of central density of the star to the saturation density
of nuclear matter at T = 0MeV by different parameter y sets.
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Fig. 8. Comparison between the pure neutron and the β-stable
(npe) matter for the ratio of the neutron star mass to the
solar mass as a function of the radius of the neutron star at
T = 0MeV by different parameter y sets. The dash-dotted line
represents the predictions of a non-relativistic BHF calculation
for the pure neutron matter case, see text.

for the three different scaling parameters y are less than
that of the pure neutron star and the corresponding ra-
tios ρc/ρ0 are larger than that of the pure neutron star.
All that is consistent with the fact that for β-stable (npe)
matter we have less repulsion due to the relatively larger
proton fraction.

The radii of the pure neutron star and the β-stable
(npe) matter as a function of the ratio of central density
of the star to the saturation density of nuclear matter for
different parameter y at T = 0MeV are given in fig. 7.
It is seen that the radii of the pure neutron stars and the
β-stable (npe) matter increase with increasing y, but the
influence of y on the radius is not too large.

Figure 8 shows the ratio of the neutron star mass to
the solar mass as a function of the radius of the neutron



344 The European Physical Journal A

star for different parameters y at T = 0MeV, for the two
cases, pure neutron and npe. It is shown that in all cases
the mass of a neutron star is not sensitive to y for small
radii whereas it becomes sensitive for large ones. The mass
of the pure neutron star decreases as y increases for a fixed
radius in the range of radii from about 6 to 13 km. Be-
yond 13 km the mass of the pure neutron star for a fixed
y first increases and then backbends passing through the
maximum point. The obtained maximum masses of the
pure neutron stars are 2.30, 2.22 and 2.13M¯ for y = 0.10,
0.08 and 0.06, respectively, and the corresponding radii are
11.71, 11.53 and 11.36 km. The situation for the β-stable
(npe) matter is similar with that of the pure neutron case.
The mass of the β-stable (npe) star decreases as y in-
creases for a fixed radius in the range of radii from about
5 to 12 km. Beyond 12 km the mass of the β-stable (npe)
matter for a fixed y first increases and then backbends
passing through the maximum point. The obtained max-
imum masses of the β-stable (npe) matter are 1.91, 1.86
and 1.80M¯ for y = 0.10, 0.08 and 0.06, respectively, and
the corresponding radii are 10.69, 10.54 and 10.37 km. It
is observed that the radii of both the pure neutron star
and the β-stable (npe) matter increase as y increase, and
the radius of the pure neutron star for a fixed y is larger
than that of the β-stable (npe) matter.

Compared with the possible observations of neutron
stars reviewed in ref. [25], it seems that the present model
with the BR mass scaling can be used to describe the
properties of the neutron stars. In particular we have per-
formed a detailed comparison with completely different
microscopic many-body models, of Brueckner-Hartree-
Fock (BHF) type, within the same pure nucleonic picture.
In fig. 8 we also plot the prediction of a non-relativistic
BHF-EOS calculation, including three-body forces [26],
for a pure neutron matter case. This comparison could
shed some light on the connection between the mass
scaling laws and the nucleonic excitations giving rise to
the main three-body microscopic forces within the quark
sector [27].

We note that the two calculations are showing very
similar Mass-Radius correlation curves. In particular the
maximum masses are very close while the neutron star
turns out to be more compact in the BHF case. The values
are larger than the observational datum Ms/M¯ ≈ 1.44.
In fact this is usually assumed as a threshold of the neu-
tron star mass, since it is the most precise observation, but
higher values cannot be ruled out. Our result is presum-
ably due to a too crude composition assumed for the star.
Indeed we have seen that with inclusion of protons and
electrons in beta equilibrium the mass ratio is quenched
to a value about two times smaller, with the mechanism
described before. An additional inclusion of hyperons is
expected to further reduce this value, see ref. [28].

7 Summary and conclusions

The novel and meaningful features of the present model
are that the in-medium effects can be largely incorporated
in the effective nuclear interaction just by the BR mass

scaling procedure. The bare meson masses and meson-
nucleon coupling constants adopted in the present calcula-
tion are taken from the well-known Bonn potential, which
reproduces the experimental phase shifts of the NN scat-
tering and the deuteron binding energy. This procedure
allows a separate estimation of other in-medium correla-
tion contributions, in particular of non-linear terms. This
is important in order to check the intrinsic consistency of
the model.

Our findings show that the BR mass scaling plays an
important role in the equation of state of nuclear mat-
ter. The obtained results indicate that the present model
can reproduce the empirical properties of nuclear matter
at zero or finite temperature and make reasonable predic-
tions in different density regions.

Similar effects were already suggested from micro-
scopic many-body calculations [12,13]. We think that it
is interesting to show this result within an effective rel-
ativistic mean-field framework, which is more physically
trasparent and of prompt use for nuclear structure and
dynamics problems.

The present model, extended to isospin asymmetric
nuclear matter without additional free parameters, is then
applied to investigate the properties of the neutron stars
and the results are quite reasonable in comparison with
different many-body approaches.

We conclude with a general comment. We like to note
that that the relative simple functional form of the nuclear
EOS obtained from the BR-scaling prescription appears to
work amazingly well on a wide range of baryon densities,
from zero to roughly five times ρ0.
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neutron star structures. This project is supported by the Na-
tional Natural Science Foundation of China under Grant No.
10275002, the INFN of Italy, and the Major State Basic Re-
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